Value of API crush test for ceramic proppant evaluation and field studies on productivity in unconventional reservoirs

Outline

- The need to critically review API crush test and misconceptions
- 10 Myths SPE 119242
 How to use and misuse crush data!
- Recommendations for proppant evaluation
- What matters when evaluating proppant quality
- Production behavior in fractures completed with different proppants - field studies

The development stages

What test methods in proppant development to use?

- Testing according to ISO 13503-2 (2006)
- Identification of an easy-to-use method to quickly qualify or discard candidate proppants or mineral blends
- Where to test for varification
- External input (ea. fluid systems compatibility)

CARBO*RosLite*

- In 2010 TNK-BP asked Carbo to develop a «Ryabchek» proppant
- Initial research was done in Carbo's research center in Houston
- A new product was developed in Russia, launched in 2013, CARBORosLite

How to distinguish a promising blend from a failure

- Crush test, SG and acid solubility for quick answers
- Run full API test on promising blends

PROBLEM!

Identify best blend

What if Crush test results are misleading?

- From experience and SPE 119242 we know, that crush tests are of limited, or no use to conclude conductivity
- What matters is conductivity as a direct indicator for production rates
- It is technically impossible to run conductivity test on all blends

TNK-BP QAQC for light weight proppant

Fracture Closure Stress (psi/MPa)	Proppant Pack Conductivity (mD/ft)			
	10/14	12/18 - 12/20	16/20 - 16/30	20/40
2000 / 13,79	no data	35708	18270	8352
4000 / 27,58	no data	21091	12795	6538
6000 / 41,37	no data	8442	6445	4055
8000 / 55,16	no data	3775	2806	2324
10000 / 68,95	no data	1613	1198	1241
12000 / 82,74	no data	200	225	60
14000 / 96,53	no data	90	154	38
Test Pressure (psi/MPa)	Proppant Crush Test (% Fines)			
	10/14	12/18 - 12/20	16/20 - 16/30	20/40
5000 / 34,47	8,0	3,0	2,0	1,0
7500 / 51,71	22,0	19,8	13,0	6,0
10000 / 68,95	38,0	35,0	21,0	12,0
12500 / 86,18	48,0	43,0	33,0	24,0
15000 / 103,4	no data	49,0	39,0	31,0

Crush test vs conductivity

- Please take reference to tables provided...
- CARBORosLite 12/18 crush is 2 x higher than specs BUT conductivity is in line or higher

SPE 119242

How to Use and Misuse Proppant Crush Tests – Exposing the Top 10 Myths

T. T. Palisch, M. Chapman, R. Duenckel,S. Woolfolk, CARBO Ceramics, Inc.M. C. Vincent, Insight Consulting

Crush Test Protocols

- Crush tests are cheap, fast, and data available
- API RP56 (1983) & RP60 updated in ISO 13503-2 (2006)
 - "improve quality...delivered proppants"
 - "enable...to compare physical properties"
 - Original intent to help qualify sand sources
- "Crush results" and proppant selection
 - "qualified engineering analysis....required for their application to a specific situation"
 - SPE 11634 Conductivity comparisons cannot be made on the basis of crush tests
 - **Yet many still select proppants based on crush results **

Ten Myths to Investigate

1. Crush tests simulate realistic conditions

ISO 13503-2 Crush Test Procedure

- Proppant is pre-sieved to remove particles outside of stated mesh range.
- Dry proppant placed in steel cell at ~4 lb/sq ft (sand equivalent)
- Room temperature
- Proppant evenly distributed with level surface
- Load applied at uniform rate
- Constant stress maintained for two minutes

- Proppant is sieved post-crush. The weight percent which falls below the primary screen is reported.
 - For 16/20 proppant all material < 20 mesh is reported as "fines"
 - For 30/50 proppant all material < 50 mesh is reported as "fines"

Are test conditions realistic?

- Proppant is pre-sieved.
- Proppant loading (pack width ~ 1/2")
 - Sand/RCS/LWC ~4 lb/ft²
 - IDC ~4.8 lb/ft²
 - Bauxite ~5.2 lb/ft²
- Smooth, steel plates embedment?
- "Carefully loaded"
- Dry, room temperature
- 2000 psi/min, relaxed after 2 minutes
- Only the particles smaller than bottom screen are considered "fines" or "crush"

Ten Myths to Investigate

Crush tests simulate realistic conditions
 Crush tests are reliable/repeatable

Are the results repeatable?

16/30 Brown Sand Hand Loaded Weight Percent Crush at 4000psi

Are the results repeatable?

16/30 Brown Sand Mechanical Loaded Weight Percent Crush at

Are the results repeatable/reliable?

Crush Cell Loading critical

- "variance in crush results....associated with method of loading..."
- Significant efforts ongoing on ISO Committee and StimLab to alleviate variations in results
 - Loading technique thought to be the cause
 - Lab to lab, technician to technician, equipment to equipment

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush

Does Fracture Width Affect Crush?

Does Fracture Width Affect Crush?

- Interior grains loaded "evenly"
- Exterior grains have fewer load points
- Crush increases significantly as proppant loading decreases

- For a 20/40 proppant, there are approximately 24 layers of proppant in standard 4 lb/ft² crush test.
 - 8% are exterior grains
- 1 lb/ft² is ~6 layers of 20/40 proppant
 - 33% are exterior grains

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle arrangement is realistic

Uniform Packing Arrangement?

Is this ribbon laterally extensive and continuous for hundreds or thousands of feet? Pinch out, proppant pillars, irregular distribution?

Potential Proppant Arrangements

- 45 t of proppant contains ~125 billion particles
- Most every arrangement we can envision likely exists somewhere in a frac
- All arrangements cause higher stress concentration on proppant than our "idealized" testing on uniform wide packs
- In series, the flow capacity limited by poorest arrangement, not the average

10,000 psi Crush vs # Layers

1000 psi Crush vs # Layers

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle arrangement is realistic
- 5. Small particles are stronger

Are Large Particles weaker than Small?

For all proppant types, larger grains have greater individual strength.

Source: Stim-Lab Consortium, July 2001 1.8-16

"There's Strength in Numbers"

Smaller mesh sizes distribute the load across more particles compared to larger mesh sizes, and provide more layers for the same mass loading

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle distribution is realistic
- 5. Small particles are stronger
- 6. Resin coating improves particle strength

Does the application of resin increase Particle Strength?

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle distribution is realistic
- 5. Small particles are stronger
- 6. Resin coating improves particle strength
- 7. All proppants fail (crush) in the same way

Do all Proppants Fail in the Same Manner?

Brown Sand at 6k psi.

RCS at 8k psi.

When they fail...

- Sands shatter like a glass
- Ceramics cleave like a brick
- Resin Coated products
 "deform"; fines captured

IDC at

8k psi.

Do all Proppants Fail/Crush the Same?

Remember that 5% crush on a 20/40 proppant could be a 5g of 50 mesh particles or 5g of 200 mesh particles.

Source: CARBO Analyses Nov 1998

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle distribution is realistic
- 5. Small particles are stronger
- 6. Resin coating improves particle strength
- 7. All proppants fail (crush) in the same way
- 8. 5% crush damages all proppants similarly

Do fines affect all proppants similarly?

% Decrease in Flow Capacity

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle distribution is realistic
- 5. Small particles are stronger
- 6. Resin coating improves particle strength
- 7. All proppants fail (crush) in the same way
- 8. 5% crush damages all proppants similarly
- 9. Hot/wet crush tests provide adequate understanding

Fluid Effects

Crush testing is performed dry. What if the proppant is saturated?

Is one set of Test Conditions superior to another?

Dry, wet, hot, room temperature, water or oil... is one method more realistic than another?

6k Crush @ 2#/ft2

Ten Myths to Investigate

- 1. Crush tests simulate realistic conditions
- 2. Crush tests are reliable/repeatable
- 3. Fracture width doesn't affect proppant crush
- 4. Uniform particle distribution is realistic
- 5. Small particles are stronger
- 6. Resin coating improves particle strength
- 7. All proppants fail (crush) in the same way
- 8. 5% crush damages all proppants similarly
- 9. Hot/wet crush tests provide adequate understanding
- 10. Crush tests correlate with conductivity

Can Crush results be Correlated to Conductivity? Test Differences

Conductivity Test Proppants evaluated as received Equivalent mass loading 2 lb/ft^2 Sandstone shims Flow brine through pack Elevated temperature (150° to 350° F) Stress held for at least 50 hours

Crush Test Remove out of spec particles Equivalent *volume* loading $\sim 4 - 5.2 \text{ lb/ft}^2$ **Steel pistons** Dry Room temperature Stress held for 2 *minutes*

Does proppant damage in the conductivity cell correlate to damage with other loading procedures?

Can Crush results be Correlated to Flow Capacity?

Can Crush results be Correlated to Conductivity?

Are Crush results Useful?

In Manufacturing

- CARBO performs >70,000 crush tests per year!
- With automated sampling and crush equipment, can achieve extremely repeatable data
- Excellent QC gauge for ensuring a consistent quality product is being produced
- But results are not predictive of conductivity (CARBO has ~ dozen conductivity cells running 24/7/365)

For Proppant Selection

- By itself, <u>CAUTION</u> should be used.
- May be used for qualitative observations.
- Conductivity testing a much better way to determine proppant value

From API test to practice

- We understand that API test is giving misleading, or at best incomplete answers
- Conductivity tests are closer to reality and a better tool to select a proppant
- Now lab meets reality: How much conductivity is really there and how proppant quality impact productivity

Proppant in UCR

The Challenge of Tight/Unconventional reservoirs:

 EXTREAMLY low permeability formations

Applying key technologies driving UCR development:

- Advanced horizontal drilling and completion
- Multi stage fracturing to dramatically increase reservoir contact

Permeability (pore throat) visualization

Territory of Moscow represents shale!

Fracture Optimization

- Wellbore placement and lateral length
- Completion hardware and isolation techniques
- Fracture spacing and number of fracs
- Fracture geometry and conductivity

How can we increase fracture conductivity?

- Larger proppant volumes
- Higher proppant concentration
- Larger diameter proppant (depending on quality)
- Cleaner fluids
- Higher tier/Quality proppant

In most cases, increase in conductivity will lead to an increased investment

Proppant selection process

- Predict the fracture Conductivity at Realistic Conditions
 - Several sophisticated Frac Models will do this
- Run sensitivities to determine optimal Conductivity
 - Provides the highest return on investment
- Validate with field results
 - Do the results match the model? Recalibrate?

Eagle Ford Shale

Webb County operator

- Evaluated Tier 1 vs Tier 3 proppants
- Compared to internal wells, as well as offset operators

Conductivity at Eagle Ford Conditions

Eagle Ford Production Match/Modeling

Production impact of conductivity

Haynesville Shale

Haynesville Shale

- Desoto/Caddo Parish by one operator
- 55 Wells 20 utilized Tier 1 proppant, 35 utilized Tier 2
- All drilled/completed similarly in similar time frame

Actual production after 2,5 years

Bakken Trial

What impacts proppant pack conductivity from a proppant perspective

- Improved roundness equals to improved "space to flow"
- Shape and form of fines
- Ability of fines to migrate
- Proppant uniformity and strength
- Resistance to cyclic loads, chemicals and temperature

Key Take Away Messaging

- The HF process provides two things reservoir contact and conductive pathway.
 - It is the critical (only) link between the reservoir and the wellbore
- Proppant is the conductivity pathway.
- Hydraulic fractures are Conductivity Limited...period.
 - The more you have, the more you make
 - One must estimate the conductivity of the fracture at realistic conditions
- • Proppant Selection cannot be made based on depth, stress, mean particle diameter or what the last engineer did.
 - It must be designed specifically to the deliverability of a given well
- Proppant Selection is a Cost vs Benefit decision
 - You must determine the economic benefit of increasing the conductivity via frac modeling and field validation

Summary

- Availability and cost impacting proppant selection
- Unconventional reservoir developments, when taking off, will require massive volumes
- Fluid selection and Conductivity should drive proppant selection
- Best completion practice require a realistic estimate of conductivity
- The economical impact can be tremendous

Questions?

- Presentation based on SPE 119242 and 160206
- Contributors: T. Palish, M. Chapman, J. Godwin, R. Dunckel S. Woolfolk, M.C Vincent