Интегрированный проект по прогнозу зон продуктивности баженовской свиты на основе сейсмических данных

Seismic based integrated project for Bazhenov sweet spot prediction – a case study

Константин Кунин - Schlumberger

DATA & CONSULTING SERVICES | Global expertise

Содержание / Contents

• Реальный проект по прогнозу продуктивности баженовских отложений

- Bazhenov sweet spot integrated project: a case study
- •Прогноз трещиноватости по сейсмическим данным
 - Seismic-based natural fracturing forecast
- Прогноз пористости и литологии по сейсмическим данным
 - Seismic-based lithology and porosity forecast
- •Прогноз зон продуктивности и результаты бурения
 - Sweet-spot forecast and results of the drilling

Главная распространенная ашибка The Greatest Mikstake

Баженовская свита –

везде одинаковая

Bazhenov –

is always the same

ATA & CONSULTING SERVICES

Главная распространенная ошибка The Greatest Mistake

Баженовская свита – *разная!* везде одинаковая

Bazhenov – *different!* is always the same

ATA & CONSULTING SERVICES

Проект по прогнозу продуктивности баженовской свиты Bazhenov Sweet-spots Forecast Project: a Case Study

Заказчик не знал механизма нефтеносности: натуральная трещиноватость или пористость. Он хотел увидеть sweet spots. / Customer had no clue – what's a reason for production from Bazhenov

Для трещиноватости / to predict natural fracturing:

- Миграция дуплексных волн / Duplex Wave Migration
- Азимутальная анизотропия и азимутальная AVA-Az инверсия / Azimuthal anisotropy and azimuthal AVA-Az inversion
- Анализ динамических и геометрических атрибутов / Attribute analysis

Для пористости / to predict pore space:

• Детерминистическая и стохастическая AVA инверсия / deterministic and stochastic seismic inversion

В сочетании с Well Driven Seismic, петрофизикой, геомеханикой, рокфизикой, анализом данных ПГИ, ГДИ, разработки, керна и данных имиджеров. In conjunction with WDS, petrophysics, rosk physics, geomechanics, logs, PLT, tests, production, core, imagers.

Все осложнялось нерегулярными данными / Uneven and irregular data

Интерпретация ГИС в баженовских отложениях Bazhenov Formation Evaluation

Коды петротипов: 1- породы глинисто-кремнистые; кремнисто-глинистые; карбонатно-глинисто-кремнистые; 2- керогеново-глинистокремнистые (с высоким содержанием OB); 3- карбонатно-кремнистые доломитизированные породы (доломитизированный радиолярит) или породы с реликтовой биоморфной структурой, нефте- или бутумонасыщенные - коллектор; 4- известняки (плотные прослои); 5кремнистые породы (радиоляриты), нефтенасыщенные - коллектор; 6- кремнисто-карбонатные породы, трещиноватые, брекчированные – аналог КС₁; 7- глинистые разности пород.

DATA & CONSULTING SERVICES Global expertise

Сопоставление с данными керна (свечение в УФ) Comparison with Core Data (UV light)

Global expertise

Выделение коллекторов по ПГИ Reservoirs by PLT

Нефтеотдающим является не весь интервал баженовской свиты, а определенные тонкие прослои пород толщиною 1-3 м

-коллектором могут являться плотные пропластки кремнистых и карбонатно-кремнистых пород в нижней части баженовской свиты (пачка 5Б), которые выделяются в разрезе всех скважин -реже, продуктивные интервалы выделяются в средней части бажена (пачка 4Б) и верхней части абалака (пласт КС)

Сравнение дебитов нефти до и после ГТМ **Production before and after treatment**

Максимальные притоки из баженовской свиты 30 т/сут (за искл. скв. W) в среднем - 10т/сут Высокие дебиты в некоторых скважинах достигнуты благодаря успешным ГТМ Maximum production – 30 tpd (except well W), median – 10 tpd. High inflows in some wells caused by treatments and fracs only.

Global expertise

DATA & CONSULTING SERVICES

Механизм продуктивности баженовской свиты Bazhenov production drive

При этом была выявлена закономерность – накопленная добыча и средний дебит (на фонтане) в сутки прямо пропорциональны толщине коллектора и линейной емкости.

Поэтому для выявления sweet spots нам надо было спрогнозировать как мощность коллектора, так и трещиноватость.

DATA & CONSULTING SERVICES Global expertise

Механизм продуктивности баженовской свиты

Bazhenov production drive

У большинства скважин проницаемость, определенная по ГИС сопоставима с проницаемостью, определенной по ПГИ. Однако, несколько скважин показывают намного большую проницаемость по ПГИ, чем по ГИС – доказательство работы трещиноватого коллектора

Кпр продуктивность / Permeability by production

Скв.	Кпр по данным ГИС, %		Прод м3/	уктиві (сут*/	ность, Атм)	Нэфф_ГИС м		Нэфф	kh, мд*м (индекс -продуктивности) ГТМ	Проницаемость из продуктивности скважин, мд								
	ср. арифм.	макс.	Min	Aver	Мах	3+5	3+4+5	ШИ, М	и, м S=2	S=0	S=-2		если раб колл.	если раб плотн.	πο ΠΓΙ	если раб. колл.	если раб. плотн.	по ПГИ	если раб. колл.	если раб. плотн.	по ПГІ
Α	1.3	16.1	0.12	1.00	1.8	3.8	6.6	4.8	21	139	183	ГРП, ГКС	5.6	3.2	4.4	36.7	21.1	29.1	48	28	38
Б	13.1	53.2	0.67	0.85	1.6	4	7.4		119	119	162	ГКО	29.7	16.1	-	29.6	16.0	-	41	22	-
В	1.0	2.8	0.14	0.51	0.8	2.2	4.2		25	71	81	СКО	11.3	5.9	-	32.3	16.9	-	37	19	-
Г	14.4	164.6	0.19	0.40	0.71	2.6	3.4		34	56	72	ГКО	13.0	9.9	-	21.5	16.4	-	28	21	
Д	19.7	165.9	0.03	0.18	0.28	1.8	5.2	1.2	5	25	28	ско, гко	3.0	1.0	4.4	13.9	4.8	20.9	16	5	24
E	2.6	36.1	0.01	0.12	0.19	5	6.6	5.19	2	17	19	ГРП, ГКС	0.4	0.3	0.3	3.3	2.5	3.2	4	3	4
ж	0.2	1.3	0.034	0.08	0.11	1.6	5.2		6	11	11	ГРП, СКС	3.8	1.2	-	7.0	2.1	-	7	2	
3	4.6	10.9	0.01	0.03	0.05	2.4	4.6		2	4	5	ГРП, ГКС	0.7	0.4	-	1.7	0.9	-	2	1	
И	3.3	26.0	0	0.00	0	3.6	5.6		0	0	0	нет	0.0	0.0	-	0.0	0.0	-	0	0	-
К	4.2	16.5	1.27	2.54	3.8	4.6	8.6		225	354	386	ГКО	49.0	26.2		76.9	41.1		84	45	

DATA & CONSULTING SERVICES Global expertise

Что можно извлечь из сейсмики? What can be derived from seismic?

- Изображение недр <= Обработка & интерпретация
 - Subsurface Image <= Processing & Interpretation</p>
- Упругие свойства <= Инверсия</p>
 - Elastic properties <= Inversion
- Скорости <= Обработка & Инверсия</p>
 - Velocities <= Processing & Inversion</p>
 - 4Д разница <= Обработка & Интерпретация
 - Time lapse difference <= Processing & Interpretation
 - Анизотропия <= Обработка & Интерпретация
 - Anizotropy <= Processing & Interpretation</p>
 - Эффекты вязкости <= Обработка & Интерпретация
 - Viscousity <= <= Processing & Interpretation</p>

Содержание / Contents

Реальный проект по прогнозу продуктивности баженовских отложений

- Bazhenov sweet spot integrated project: a case study
- •Прогноз трещиноватости по сейсмическим данным
 - Seismic-based natural fracturing forecast
- Прогноз пористости и литологии по сейсмическим данным
 - Seismic-based lithology and porosity forecast
- •Прогноз зон продуктивности и результаты бурения
 - Sweet-spot forecast and results of the drilling

Well Driven Seismic - схема движения данных / Data Flow

Сомпания 1 / Contractor 1

Компания 2/ Contractor 2

Geoprime + Slb

Сомпания 1 / Contractor 1

Компания 2/ Contractor 2

Geoprime + Slb

Трещиноватый коллектор: Различные масштабы Natural Fractures: Different Scales

DATA & CONSULTING SERVICES Global expertise

Геологические особенности Geological Features

Global expertise

DATA & CONSULTING SERVICES Global expertise

DATA & CONSULTING SERVICES Global expertise

Специальная обработка для трещиноватости Special Processing for Fracture Forecast

Предлагаемые типы обработки (совместно с компанией Геопрайм):

- 1. P-wave Anisotropy разделение и обработка данных азимутальных групп с дальнейшим анализом скоростных и амплитудных азимутальных неоднородностей (Fractogram) и/или азимутальная инверсия Шлюмберже.
- 2. 3C/4C Seismic Обработка многокомпонентных съемок с анализом поперечной волны.
- **3.** Выделение нерегулярной составляющей (Diffusion) поля, обработка и получение данных рассеянной компоненты.
- 4. Дуплексная миграция волнового поля (Duplex Wave Migration) направлена на получение информации о вертикальных границах

Обработка для трещиноватости 1: Азимутальная AVA-Az инверсия Seismic processing for fracturing 1: Azimuthal AVO-Az Inversion

Требует корректно выполненной широкоазимутальной сейсмической съемки, соответствующей обработки, скважин с данными SonicScanner или FMI.

Required accurate wide-azimuth seismic with point receivers and wells with FMI and SonicScanner

Стратиграфический слайс по кубу анизотропии скоростей / Vs slow/fast anisotropy

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

DATA & CONSULTING SERVICES Global expertise

Сопоставление анизотропии и продуктивности Anisotropy vs Productivity

DATA & CONSULTING SERVICES Global expertise

Обработка для трещиноватости 3: нерегулярная составляющая Special processing for fracturing 3: diffraction / irregularity

Используется в качестве дополнительного источника информации для выделения зон трещиноватости.

Отраженная волна подавляется высокоразрешающим Radon-фильтром.

Также используется факт смены полярности дифракции на сейсмограмме ОПВ.

Преимущество – нет необходимости в больших удалениях.

LTING SERVICES

Обработка для трещиноватости 3: Миграция дуплексных волн (МДВ / DWM) – теория

Seismic processing for fracturing: Duplex Wave Migration

Base boundary at the bottom of the productive layer

Target sub-vertical layer

Использование атрибутов для создания моделей с двойной пористостью. Seismic attributes for creation of double porosity models

DATA & CONSULTING SERVICES Global expertise

Кинематическая интерпретация: методика выделения тектонических нарушений

- «Ручная» корреляция по сейсмическим разрезам:
- разрыв и смещение осей синфазности
- ослабление амплитуд
- флексурные перегибы
- Выделение линейных элементов по картам атрибутов:
- Временная толщина между горизонтами
- Curvature
- Разложение на ортогональные компоненты.
- Расчет объемных атрибутов: выполнение Ant Tracking по кубам Variance и Chaos
- Использование результатов миграции дуплексных волн

Ручная корреляция тектонических нарушений

Б

•Корреляция нарушений проводилась по сейсмическим разрезам вручную с опорой на атрибуты

•Тектонические нарушения проявляются в виде сбросов, образуя грабены проседания над структурными поднятиями, осложненными разломами с «фундамента»

Модель образования бескорневых разломов

Система бескорневых нарушений фроловского СК

Система сбросов

ОГ М

•Наблюдаемые линеаменты СВ направления на картах атрибут связаны с разломами в нижнемеловых отложениях, доходящих до кровли бажена

•Корреляция бескорневых нарушений была выполнена вручную по сейсмическим разрезам с опорой на атрибуты

Стратослайс по ОГ Б -Chaos

Сопоставление с миграцией дуплексных волн

Сопоставление аномалий дуплексных волн с разломными полигонами по ОГ Б, выделенными по волновому полю

Иллюстрация была удалена в соответствии с соглашением о конфиденциалы -160

240 -

200

160

120 —

-80 -120

-240 —

DATA & CONSULTING SERVICES **Global expertise** Изучение направления простирания разломов по сейсмике и скважинам

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

Азимут простирания небольших естественных трещин по FMI скв. ҮҮҮ

80 D

-50

Направление техногенной трещиноватости по скважинам

Направление максимального стресса соответствует направлению открытой трещиноватости

> Стереопрофиль ствола скв. YYY по данным UBI

Направление максимального стресса – 330°

AntTracking (Chaos) - связь с продуктивностью скважин / AntTracking (Chaos) - relationship with productivity

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

Рисунок 5.15. Пример техногенных трещин на имидже FMI

Рисунок 5.13. Трещина гидроразрыва с оперяющими ее трещинами.

Прогноз трещиноватости:дуплексная миграция + AntTracking+ ручная интерпретация разломов + атрибуты + геомеханика Fracture Forecast: Duplex Wave + AntTracking + Faults + Attributes + GM

> Цветом – аномалии МДВ Зеленые – разломы Duplex wave – color-coded Faults are green

240

200

160 —

120 —

80 <u>-</u> D

-80

-120

-160

-240

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

Содержание / Contents

Реальный проект по прогнозу продуктивности баженовских отложений

- Bazhenov sweet spot integrated project: a case study
- •Прогноз трещиноватости по сейсмическим данным
 - Seismic-based natural fracturing forecast
- Прогноз пористости и литологии по сейсмическим данным
 - Seismic-based lithology and porosity forecast
- •Прогноз зон продуктивности и результаты бурения
 - Sweet-spot forecast and results of the drilling

Как вредит повышение разрешенности? How Does Increased Frequency Hurt Seismic?

Подрядчик 2 SNEST Contractor 2

Frequency [Hz]

Β повышенной погоне 3**a** разрешенностью сейсмических Подрядчик, зачастую под данных Заказчика, пренебрегает желаний давлением физическими ограничениями и здравым смыслом. В результате получаются разрезы широким С частотным диапазоном, высокой разрешенностью, насыщенными высокими частотами... состоящими, в основном, из шума.

После хорошей обработки высокие частоты могут и не доминировать, но соотношение сигнал/шум позволяет выявлять геологические особенности на высоких частот, в том числе с помощью инверсии.

Как вредит повышение разрешенности? How Does Increased Frequency Hurt Seismic? Компания 1 / Contractor 1 Компания 2/ Contractor 2

Суммарный разрез Final Stack

Geoprime + SIb

DATA & CONSULTING SERVICES

Global expertise

Schlumberger

DATA & CONSULTING SERVICES | Glob

Global expertise

Выделение врезов в викуловской свите Vikulov incised valleys detectability

DATA & CONSULTING SERVICES | Global expertise

Что такое сейсмическая инверсия? What is Inversion?

Сейсмические наблюдения / Seismic

S = RC*W+N

Акустическая инверсия / Acoustic Inversion

DATA & CONSULTING SERVICES Global expertise

АVО эффект / АVО

DATA & CONSULTING SERVICES Global expertise Schlumberger

Сейсмограмма / Seismic gather

Угол падения / Angle of Incident

Одновременная AVA/AVO инверсия MMRD

Низкочастотная модель

Одна из наиболее важных вещей в инверсии

- Данные ГИС
- Горизонты и разломы
- Углы наклонов
- Скорости

НЧМ

10 Hz

• Зависимости свойств от глубины

Сейсмика

DATA & CONSULTING SERVICES Global expertise

Откуда берется повышенная детальность? Nothing Gets from Nowhere!

Ничто не возникает ниоткуда.

Ниже сейсмической частоты – из низкочастотной модели. В пределах сейсмики – из сейсмических данных.

За пределами сейсмической разрешенности – статистически верная оценка на основе данных ГИС.

Увязано со скважинами!

Частота, Гц / Frequency, Hz

DATA & CONSULTING SERV Global expertise

Анализ петроупругих свойств / Petro-elastic relationship

Коллектор – тонкий прослой пористых радиоляритов Reservoir is thin layer of porous radiolarites Для прогноза мощности использовалась детерминистическая и стохастическая AVA инверсии в сочетании с результатами петроупругого моделирования Seismic deterministic and stochastic inversion used for net thickness forecast.

A & CONSULTING SERVICES

Обоснование прогноза коллекторских свойств Petro-elastic relationship

Стохастическая инверсия / Stochastic AVA inversion Сопоставление АИ в скв. А, не использованной в инверсии / Blind test well A AI forecast

DATA & CONSULTING SERVICES

Global expertise

Johnninger Aei

Стохастическая AVA инверсия / Stochastic AVA inversion

Сопоставление плотности в скв. А, не использованной в инверсии /

Blind test well A density forecast

Стохастическая AVA инверсия / Stochastic AVA inversion Прогноз вероятности коллектора в скв. А, не использованной в инверсии Reservoir probability forecast in blind well A

DATA & CONSULTING SERVICES | Global expertise

Интерпретация инверсии – вероятность коллектора Inversion Interpretation – Reservoir Probability

Геомеханическое моделирование с учетом результатов инверсии Inversion-based Geomechanic Modelling

Для 3D геомеханического моделирования использовались данные сейсмической инверсии – кубы модуля Юнга, коэффициента Пуассона и плотности.

Cubes of Poisson coefficient, Young moduli and density derived from seismic by inversion have been used for 3D geomecanical modelling

DATA & CONSULTING SERVICES Global expertise

Карты пластовых давлений, магнитуд и направлений максимального горизонтального напряжения Formation Pressure and Hmax Stress Maps

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

DATA & CONSULTING SERVICES Global expertise

Прогноз открытой трещиноватости **Open fracture forecast**

Анизотропия скоростей

Velocity anisotropy Иллюстрация была удалена в соответствии с соглашением о Ant-Tracking Variance конфиденциальности

Curvature

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

Напряжения **Stress**

Дуплексная миграция / Duplex waves

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

CONSULTING SERVICES

Schlumberger

иллюстрация была

удалена в

соответствии с

соглашением о

конфиденциальности

Комплексная интерпретация: выбор точек под бурение Integrated interpretation: well location recommendations

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

Данные скважин Рекоменлации под бурение	Well location recommendations
	Moll data
Карты атрибутов трещиноватости +	Fracture attributes +
Карты азимутальной анизотропии +	Azimuth anisotropy anomalies +
Карта дуплексных волн +	Duplex wave anomalies +
Прогноз напряжений +	Stress forecast +
Прогнозные эфф. толщины +	Net thickness forecast+

DATA & CONSULTING SERVICES Global expertise

Заключение и рекомендации

Иллюстрация была удалена в соответствии с соглашением о конфиденциальности

1.Бурение горизонтальных скважин в области наличия коллектора и повышенной естественной трещиноватости, проведение ГРП.

2. Выполнение совместного геологического, гидродинамического и геомеханического моделирования с использованием сейсмического прогноза коллекторов и трещиноватости.

> DATA & CONSULTING SERVICES Global expertise

Schlumberger

Модель ECLIPSE

2641

Модель Petrel 2620

Модель Visage

Uni-Q продолжение развития технологии Q-Land

√Базовая концепция

- Съемка с точечным приемником и источником
- Адекватная пространственная дискретизация сигнал – помеха

✓Позволяет получать данные превосходного качества

- Подавление шума
- Отсутствие искажения сигнала

✓Многочисленные практические применения

 Разведка, изучение коллекторов, точное отображение структуры и детальное картирование, широкоазимутальные съемки и азимутальная сейсмическая инверсия

Schlumberger

DATA & CONSULTING SERVICES

Global expertise