

SPE Moscow Section

Методика комплексирования данных специальных методов ГИС для изучения вторичной пористости карбонатных коллекторов (Integrated approach to studying of secondary porosity in carbonates using special well logging data)

Presenter: Artem Syrmolotov, Weatherford

Содержание (Content)

- Электрический микроимиджер (Electrical Imager)
- Кросс-дипольный акустический метод (Cross dipole acoustic)
- Комплексная интерпретация данных микроимиджера и кроссдипольного метода (Complex interpretation of imager and cross dipole acoustic data
- Пластоиспытатель (Formation tester)
- Корреляция результатов обработки спец. методов с другими исследованиями (Analyses and correlations of special methods results with other)

Пористость карбонатных пород (Pores in carbonate rocks)

Пористость в карбонатных породах может быть первичная (межзеновая и межформенная) и вторичная (кеверновая и трещинная)

Pores are created by three end - member processes that include depositional, diagenetic, and fracture mechanisms.

Эффекты бурения на трещины (Drilling fractures and drilling effects on fractures)

Увеличение раскрытости естественных трещин при бурении (Drilling regime can affect natural fractures aperture; enhances some fractures near borehole wall)

Образование трещин при бурении скважины в соответствии с направлениями горизонтальных напряжений

Drilling could be cause of fracture creation with respect to the modern maximum and minimum stress direction

Интенсивность трещин (Fracture intensity)

- Литология интенсивность трещин связана с литологическим составом породы
- Lithology changes in fracture type, morphology and density often occur at lithological boundaries.

- Складчатость интенсивность трещин пропорциональна степени изогнутости структуры
- Curvature fracture intensity is often proportional to the degree of structural curvature due to outerarc extension and inner-arc compression
- Разлом интенсивность трещин пропорциональна удаленности от разлома
- Localisation fracture intensity may be proportional to distance from a fault, forming a 'damage-zone'

Каверны (Digenetic pores)

Катагенетические преобразования карбонатных осадков: кавернообразование в результате растворения и выноса материала.

Diagenesis may reduce original porosity (cementation, compaction, replacement, or recrystallization) or it may enhance or create totally new pore types (caves, connected vugs, and karst features)

Электрический микроимиджер (Electrical microimager)

Формирование имиджа (Image creation)

Динамический и статический имиджи (Dynamic and static image)

Корреляция имиджа с керном (Image correlation with core)

Классификация трещин на имидже (Classification of fractures on the electrical image)

Проводимость (Conductivity):

- Непроводящие
- Проводящие
- Resistive
- Conductive

Раскрытость (Aperture):

- Проводящие
- Частично проводящие
- Conductive
- Discontinuous conductive

Генезис (Origin):

- Естественные
- Раскрытые
 бурением
- Трещины бурения
- Natural
- Drilling enhanced
- Drilling induced

Непроводящие трещины (Resistive fractures)

Залеченные трещины на керне (Resistive fractures on the core)

Проводящие трещины (Conductive fractures)

Открытые трещины на керне (Open fractures on the core)

Частично проводящие трещины (Discontinuous conductive fractures)

Трещины залеченные глинистым материалом (Fractures filled with clay)

Пирит в трещинах (Pyrite in fractures)

Вывалы и техногенные трещины (Breakouts and induced fractures)

Техногенные трещины (Drilling induced fractures)

Непротяженные трещины «Nonsinusoidal» fractures

Трещины раскрытые в процессе бурения (Drilling enhanced fractures)

Расчетные параметры трещин (Calculated parameters of fractures)

- Угол падения
- Азимут падения
- Азимут
 - простирания
- Плотность
- Раскрытость
- Длинна
- Dip
- Azimuth
- Strike
- Density
- Aperture
- Length

Каверны на имидже (Vugs on the image)

Кросс-дипольный акустический метод (Crossed dipole acoustic)

Определение направления максимального горизонтального стресса по карте энергий (Maximum stress direction on the Energy map)

Анизотропия (Anisotropy)

- Интервальное время
 быстрой S (изгибной) волны
- Интервальное время медленной S (изгибной) волны
- Азимут анизотропии
- Коэффициент анизотропии
- Slowness of fast S (flexural) wave
- Slowness of slow S (flexural) wave
- Azimuth of anisotropy
- Anisotropy coefficient

Анализ волны Стоунли (Stoneley wave analyses)

Отражения волны Стоунли (Chevron patterns)

Проницаемость по волне Стоунли (Stoneley permeabillity)

- Интервальное время волны Стоунли
- Модельное интервальное время воны Стоунли
- Проницаемость
- Slowness of Stoneley wave
- Modeled Slowness of Stoneley wave
- Permeabillity

Отражения волны Стоунли (Stoneley wave reflections)

Примеры совместной интерпретации данных кросс дипольного АК и электрического микроимиджера **Complex interpretation of Imager and Crossed Dipole data**

Отражения волны Стоунли и трещины на имидже (Stoneley wave reflections and fractures from Image)

OH	1:60	Dynamic image	Dips	Static Image	Stoneley
GR GR BS 125 mm 37 125 mm 37 125 mm 37 Y Caliper 125 mm 37 Well deviation	5 5 Z акс	Discontinuous_Conductive_Fracture a seg 360 Padi acmuth a seg 260 Данамический лимдэк	Reflection energy 0 200	Reflection energy 123.4 Cranvecturil Issugac	XR1A
0 deg 5	0.991.1	N E S W N	0e 0	N E S W N	0 8000
	3198 3198 3198 3198 3198 3198 3198 3198				

ОН	1:60	Dynamic image	Dips	Static Image	Stoneley
GR 0 GAP1 11 BS 125 mm 31 X Caliper 125 mm 31 Y Caliper 125 mm 31 Well deviation	о 5 5 Z акс	Discentinuous_Conductive_Fracture o deg 360 Padi somuth o deg 360 Januarizeccak Insurger.	Reflection energy 0 200	Reflection energy 123.4 Cranivecouñ inwogic	XR1A

Интервалы со схожими имиджами (Visible similarity on the image)

Привлечение данных анализа волны Стоунли (Stoneley wave helps to identify permeable zones)

Глинистые включения и микрокаверны (Texture with clay particles and vugs)

Разделение трещин по видам (Distinguishing between fractures on the image)

Направление максимального стресса (Maximum stress direction)

Направление максимального горизонтального напряжения определяется по данным кросс дипольного АК в интервале, где не выявлено трещин на имидже

Maximum horizontal stress direction from crossed dipole acoustic data helps to identify induced fractures on the image.

Трещины раскрытые в процессе бурения в направлении максимального стресса (Drilling enhanced fractures align with maximum stress direction)

Техногенные трещины в направлении минимального стресса (Breakout net fractures align with minimum stress direction)

В направлении минимального стресса образуются

Частично проводящие трещины (Discontinuous conductive fractures)

Комплексный анализ результатов (Complex analyses)

Пористость по DTP и вторичная пористость на имидже (Porosity from DTP and secondary porosity on the Image)

Пористость по DTP и вторичная пористость на имидже (Porosity from DTP and secondary porosity on the Image)

Пористость по DTP и вторичная пористость на имидже (Porosity from DTP and secondary porosity on the Image)

Пластоиспытатель (Formation tester)

Mecтоположение скважин (Location of testing wells)

- Определение текущего
 пластового давления и
 степени истощения пластов
 Определение
 гидродинамической связи
 между пластами 1, 2 и 3
 Определение латеральных
 гидродинамических связей
 по пластам
- Определение подвижности
- Current formation pressure and depletion
- Hydrodynamical lyncs between 1, 2 и 3
- Lateral connection
- Mobillity

Скважины 1 и 2 (Wells 1 and 2)

- Давление в пласте
 2 соответствует
 начальному
 - Пласты 1, 2 и 3 гидродинамически изолированы.
- Пласт 3 наиболее истощен
- Пласт 1 вовлечен в разработку
- Formation pressure in strata 2 is primal
- Layers 1, 2 and 3 are isolated
- Layer 3 produced the most
- Layer 1 is under production

Скважина 3 (Well 3)

- Пласты 1 и 3 гидродинамически связаны
- Layers 1 and 3 are interconnected

Скважины 1, 2 и 3 (Wells 1, 2 and 3)

- Латеральная гидродинамическая связь по пласту 1
- Подтверждение теории линзовидного строения пласта 2
- Латеральная гидродинамическая связь по пласту 3 отсутствует

- Layer 1 is one hydrodynamical object in the field
- Layer 2 is local structural traps
- There is no lateral connection through layer 3

Подвижность и ΔДТ Стоунли (Mobility and ΔDT Stoneley)

Корреляционная связь подвижности и ΔDT Стоунли (Correlation between mobility from formation tester and ΔDT Stoneley)

Трассерные исследования (Tracers liquid research)

Первые часы после заливки... Few hours after injection...

Через сутки после заливки... A day after injection...

Карта распространение трассера и простирание трещин (Fractures strike and tracer flow direction)

Построение модели двойной среды (Hydrodynamic model creation)

Вопросы?

Any questions ?