RO&G 12

SPE Russian Oil & Gas Exploration & Production Technical Conference and Exhibition 2012

16-18 October 2012 • Moscow, Russia

Paper 160583

E-Field real time well temperature monitoring – Kharyaga field case

Semenov A., Renaud A., Total E&P Russia; Allanic C., Total E&P

Society of Petroleum Engineers

AGENDA

Kharyaga field

□ DTS (Distributed Temperature Sensing) project:

- completion systems
- data transfer infrastructure
- interpretation

□ Field applications

- flow profile evaluation
- scrapping optimization
- water shut-off
- cross flow identification

□ Conclusions

Kharyaga field

PLT

Completion systems

Distributed Temperature Sensing

Technique to measure temperature along a fiber optic line at any time

- Industrial laser launches 10ns bursts of light down to fiber optic
- Light is back-scattered from molecules in the fiber
- Back-scattered light analyzed to measure temperature along the fiber
- Ratio of the Stokes Raman to the Anti Stokes Raman Bands is directly proportional to temperature
- Two way light travel time determines position of recorded temperature along the fiber (due to constant light velocity)

Kharyaga DTS installations and data transfer

- □ Installed as part of completion on
 - PAD108: 4 wells
 - Pad NP-1: 2 horizontal wells
 - Pad EP-1: 4 wells DTS+ATS

Data transfer solution:

- Automated data transfer
- Traces DB from any contractor
- Huge amount of data (1 trace every 30 min) stored and available for analysis
- Dedicated DTS visualization/interpretation software
- Comply with Total IT security

Temperature traces interpretation

Flow profile evaluation workflow

Flow profile distribution		
Гор, m MD	Bottom, m MD	Inflow, bpd
2470	2475	3200
2363	2443	120
2200	2323	210
	Flov Fop, m MD 2470 2363 2200	Flow profile distributTop, m MDBottom, m MD247024752363244322002323

RO&G

Simulation model

Slide 9

Scrapping frequency optimization

□WAX deposits interval is 50-350 m TVDSS

- Scrapping operations are necessary but lead to production short falls
- Detections of wax deposits inside tubing
- Interventions only if temperature below threshold

Water inflow identification and shut off

Cross-flow identification and remedial work

Conclusions

1st full field DTS integrated project in Russia/Total

- Permanent DTS on Kharyaga field became a valuable part of overall field monitoring strategy. DTS solutions were installed on 3 Kharyaga pads (10 wells)
- Automatic data acquisition/transfer allows quick data visualization and qualitative interpretation in the Moscow office
- On-site (Moscow) quantitative DTS data interpretation become possible to get flow profile distribution
- The number of operational optimization could be done based on DTS data analysis: scrapping frequency, water shut off, cross flow elimination

RO&G 12

SPE Russian Oil & Gas Exploration & Production Technical Conference and Exhibition 2012

16-18 October 2012 • Moscow, Russia

Acknowledgements

Co-workers inside Total:

- GSR team (especially A.Renaud, E. Golitsina)
- DO team (especially T. Komova, M. Falla, E. Eropkin)
- IT team (especially A. Terentiev, H. Tanne, A. Nasyrov)
- HQ (C. Allanic)

Tendeka, Schlumberger, Weatherford companies

