Мероприятия - Материалы отфильтрованы по дате: Июль 2018
Write on 03 Июль 2018 Опубликовано в Мероприятия

Кислотная обработка скважины требует тщательной оптимизации. Однако, количество кернового материала, имеющегося в наличии, часто бывает недостаточным для проведения достаточного числа лабораторных экспериментов. В связи с этим, сложно переоценить значимость скрининга различных сценариев кислотной обработки, основанного на методах компьютерного моделирования. В большинстве симуляторов в качестве входных параметров используются эмпирические коэффициенты. Выбор этих коэффициентов может значительно влиять на результат моделирования. Более глубокое понимание процессов растворения минералов на масштабе пор будет способствовать правильному выбору параметров для проведения моделирования на большем масштабе.

Мы разработали подход, позволяющий проводить моделирование течений с химическими реакциями в пористой среде, структура которой соответствует структуре реального образца. В основе данного подхода лежит комбинация принципов химической кинетики и термодинамики, а также принципов теории функционала плотности для описания гидродинамических процессов. Ранее была продемонстрирована эффективность применения метода функционала плотности с точки зрения возможности учета сложных физических явлений при моделировании многофазных течений на масштабе пор. Имплементации химических реакций в уравнения гидродинамики проводилась в приближении установления частичного локального равновесия на каждом шаге гидродинамического моделирования.

Разработанный подход был применен для моделирования растворения доломита соляной кислотой. Моделирование было проведено на примере 2D геометрий зерна и криволинейных каналов, а также 3D модели микроструктуры доломита (Silurian dolomite). Результаты моделирования течений в каналах показывают, что в месте контакта минерала с раствором соляной кислоты происходит его растворение, в то время как химически неактивная жидкость не оказывает влияния на геометрию минерала. Согласно полученным данным, скорость растворения доломита зависит от скорости закачиваемой кислоты. Также было показано, что образование газообразного CO2 в системе влияет на скорость растворения минерала. Подобные корреляции, полученные для 3D моделей реальной микроструктуры, могут быть использованы для определения поправок к константам скоростей реакций, используемых при моделировании на больших масштабах.

Разработанный подход позволяет моделировать процессы растворения на масштабах пор. Это открывает возможность учета структурных особенностей реальной породы при крупномасштабном моделировании течения с химическими реакциями, что приведет к улучшению планирования кислотной обработки.

Об авторе:

 

Анна Белецкая

Анна окончила Химический факультет МГУ имени М.В. Ломоносова. Также в МГУ Анна защитила диссертацию на соискание степени кандидата химических наук по специальности «Физическая химия». С 2007 по 2013, работая в МГУ в должности инженера, была вовлечена в несколько исследовательских проектов, посвященных изучению механизмов каталитических реакций с помощью квантово-химического моделирования.

С 2014 Анна работает в Московском научно-исследовательском центре компании Шлюмберже в должности научного сотрудника. В настоящий момент областью научных интересов является моделирование растворения минералов на масштабе пор.